UNIT: 5 - CHEMICAL THERMODYNAMICS

Important Points

 $\Delta E = E_{p} - E_{r} = q_{v} \qquad \Delta E = q - P\Delta V \qquad \Delta E = q + w$ $w = -nRT \log_{e} \frac{v_{2}}{v_{1}} \qquad \Delta H = \Delta E + P\Delta V \qquad \Delta H = \Delta E + \Delta n_{g}RT$ Hess Law $\Delta H_{steps} = \Delta H_{1} + \Delta H_{2} + \Delta H_{3}$ Heat Capacity = $\frac{\text{Heat absorbed}}{\text{Temperature difference}}$ Specific heat capacity = $\frac{\text{Heat absorbed}}{(\text{Temperature difference}) \times (\text{Weight of subs ta nce in gram})}$ Molar heat capacity = $\frac{\text{Heat absorbed}}{(\text{Temperature difference}) \times (\text{Molecular weight})}$ $C_{pv} - C = R$ $\frac{C_{p}}{C_{v}} = (\text{gamma})$ $\frac{w}{q_{2}} = \frac{T_{2} - T_{1}}{T_{2}} = \text{Thermodynamics efficiency} \text{ state} = \frac{q_{rev}}{T}$

 $\Delta S = nC_{v} \quad \ln \quad \frac{T_{2}}{T_{1}} + nR \quad \ln \quad \frac{V_{2}}{V_{1}}. \text{ Assuming } C_{v} \text{ is constant}$ (ii) When T and p are two variables, $\Delta S = nC_{p} \quad \ln \quad \frac{T_{2}}{T_{1}} - nR \quad \ln \quad \frac{p_{2}}{p_{1}}. \text{ Assuming } C_{p}, \text{ is constant}$ (a) Thus, for an *isothermal process* (T constant), $\Delta S = nR \quad \ln \frac{V_{2}}{V_{1}} \text{ or } = -nR \quad \ln \frac{p_{2}}{p_{1}}$ (b) For *isobaric process* (p constant), $\Delta S = n \quad C_{p} \quad \ln \frac{T_{2}}{T_{1}}$ (c) For *isochoric process* (V constant), $\Delta S = n \quad C_{v} \quad \ln \frac{T_{2}}{T_{1}}$ (d) Entropy change during adiabatic expansion : In such process q = 0 at all stages. Hence $\Delta S = 0$. Thus, reversible adiabatic processes are called isoentropic process.

$$\begin{split} \Delta S &= R \, \ln \frac{V_2}{V_1} \qquad \Delta G = \Delta H - T\Delta S \\ \Delta_f G^o{}_{reaction} &= \Sigma \Delta_f G^o{}_{Product} - \Sigma \Delta_f G^o{}_{Reactant} \\ \Delta_f G^o{}_{reaction} &= \begin{pmatrix} total s tan dard free energy of \\ formation of product \end{pmatrix} - \begin{pmatrix} total s tan dard free energy of \\ formation of reac tan t \end{pmatrix} \\ \Delta G &= nRT \, \ln \frac{P_2}{P_1} \\ \Delta G^o &= -2.303RTlog \, K \\ \Delta G &= -nFE_{Cell} \\ Kirchhoff's equation. \quad \frac{\Delta H_{T_2} - \Delta H_{T_1}}{T_2 - T_1} = \Delta C_p \\ Kirchhoff's equation at constant volume, \quad \frac{\Delta E_{T_2} - \Delta E_{T_1}}{T_2 - T_1} = \Delta C_v \end{split}$$

Effect of Temperature on Spontaneity of Reactions

Δ			
_	+		Reaction spontaneous at all temperature
_		– (at low T)	Reaction spontaneous at low temperature
_		+ (at high T)	Reaction nonspontaneous at high temperature
+	÷	+ (at low T)	Reaction nonspontaneous at low temperature
+	+	– (at high T)	Reaction spontaneous at high temperature
+		+ (at all T)	Reaction nonspontaneous at all temperature
-			

```
Joule thomson coefficient \mu = \left(\frac{\partial \Gamma}{\partial p}\right)
```

For cooling $\mu = +$ ve

For Heating $\mu = -ve$

Neither cooling nor heating $\mu = 0$

The temperature at which a real gas shows neither cooling nor heating effect on adiabatic expansion (i.e., $\mu = 0$) is called inversion temperature.

Hydrogen has highest calorific value.

13.7 Kcal/mol = 57 KJ/mol (be cause of 1cal = 4.2 Joule)

Enthalpy of fusion of ice per mole is 6KJ.

Order of bond energy in halogen $Cl_2 > Br_2 > F_2 > I_2$.

Heat of vapourisation of water per mole is 10.5 KCal.

The heat of reaction is independent of the time consumed in the process.

Joule thomson coefficient $\mu = \left(\frac{\partial T}{\partial p}\right)_{H}$

97

Description*

		M.C.Q.		
1.	The temperature of th	e system decreases in an		
	(A) Adiabatic compre	ssion	(B) Isothermal con	mpression
	(C) Isothermal expans	ion	(D) Adiabatic exp	ansion
2.	If a refrigerator's doo	r is opened, then we get		
	(A) Room heated		(B) Room cooled	
	(C) More amount of h	neat is passed out	(D)No effect on re	oom
3.	The cooling in refriger	rator is due to		
	(A) Reaction of the re	frigerator gas	(B) Expansion of	ice
	(C) The expansion of	the gas in the refrigerator	(D) The work of t	he compressor
4.	The process, in which	no heat enters or leaves the s	ystem, is termed as	
	(A) Isochoric	(B) Isobaric	(C) Isothermal	(D) Adiabatic
5.	Warming ammonium	chloride with sodium hydroxi	de in a test tube is an ex	xample of :
	(A) Closed system	(B) Isolated system	(C) Open system	(D) None of these
6.	Out of boiling point (I), entropy (II), pH (III) and e	.m.f. of a cell (IV), int	ensive properties are –
	(A) I, II	(B) I, II, III	(C) I, III, IV	(D)All the above
7.	A thermodynamic stat	e function is		
	(A) one which obeys	all the laws of thermodynamics		
	(B) a quantity which is	sused in measuring thermal ch	anges	•
	(C) one which is used	in thermo chemistry		
	(D) a quantity whose v	alue depends only on the state	of the system.	
8.	In thermodynamics, a	process is called reversible w	hen 🥜	
	(A) surroundings and	system change into each other		
	(B) there is no bounda	ry between system and surrou	indings	
	(C) the surroundings a	re always in equilibrium with	the system	
0	(D) the system change	s into the surroundings sponta	ineously	
9.	Which one of the follo	owing statement is false–		
	(A) WORK is a state full (C)		(B) temperature is	a state function
	(C) change in the state	e is completely defined when t	the initial and final stat	es are specified
10	(D) work appears at the	he boundary of the system.	a mala of average in	a logad vagaal is ignited
10.	A mixture of two mol	es of carbon monoxide and or monoxide to carbon dioxide	If ΔH is the enthalm	v change and AE is the
	change in internal ener	gy, then		
	(A) $\Delta H < \Delta E$	(B) $\Delta H > \Delta E$	(C) $\Delta H = \Delta E$	
	(D) The relationship d	lepends on the capacity of the	vessel	
11.	At constant T and T	P, which one of the follow	ing statements is co	rrect for the reaction,
	$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$			
	(A) ΔH is independent	t of the physical state of the re	eactants of that compo	und
	(B) $\Delta H < \Delta E$	(C) $\Delta H > \Delta E$	(D) $\Delta H = \Delta E$	
		98		

12.	12. If ΔH is the change in enthalpy and the change in internal energy accompanying a gaseous reaction				
	(A)	∆H is always grea	ater than ΔE		
	(B)	$\Delta H < \Delta E$ only if t reactants	the number of moles of th	ne products is greater	than the number of the
	(C)	ΔH is always less	than ΔE		
	(D)	$\Delta H < \Delta E$ only if the reactants	e number of moles of the p	products is less than the	e number of moles of the
13.	Enth	nalpy is an ———	— property.		
	(A)]	Extensive	(B) Exclusive	(C) Intensive	(D) Inclusive
14.	Sele	ct the correct set of	f statement/s :		
	I. Work done by the surrounding in case of infinite stage expansion is more than single stage expansion				
	II.	Irreversible work	is always greater than reve	rsible work.	
	III. On an ideal gas in case of single stage expansion and compression system as well as surrounding are restored back to their original states				
	IV. If gas is in thermodynamic equilibrium is taken from state A to state B, by four successiv single stage expansions. Then we can plot 4 points on the P–V indicator diagram.				
	(A)	II	(B) I, II, III, IV	(C) II, IV	(D) I, II, IV
15.	If w proc	1, w2, w3 and w3 cess, the correct ord	are work done in isotherm ler (for expansion) will be	al, adiabatic, isobaric	and isochoric reversible
	(A)	w1 > w2 > w3 > w	74	(B) $w_3 > w_2 > w_1 > w_1 > w_2 > w_2 > w_1 > w_2 > $	> w4
	(C)	w3 > w2 > w4 > w	/1	(D) $w_3 > w_1 > w_2 > $	> w4
16.	The 10 li	work done in ergs t tres to 20 litres at i	for the reversible expansion s	n of one mole of an ide	eal gas from a volume of
	(A)	2.303×298×0.082log	2	(B) $298 \times 10^7 \times 8.31 \times 2.$	303 log 2
	(C)	2.303×298×0.08210g	0.5	(D) $8.31 \times 10^7 \times 298 - 2$.303 log 0.5
17	Whe	en Fe (s) is dissolve	d in aqueous HCl in a clos	ed vessel the work do	ne is
17.	(A)	nositive	(B) negative	(C) Zero	(D) cannot be defined
18	Hes	s law of heat summa	ation includes	(0) 2010	(D) cumot de defined
10.	(A)	Initial reactants only	/	(B) Initial reactants a	nd final products
	(C)]	Final products only		(D) Intermediates on	lv
19.	Ice -	– Water mass ratio	is mantained as 1 : 1 in a	given system containi	ing water in equilibrium
	with of su	i ice at constant pr ich a system is	essure. If CP (ice) = CP (v	water) = 4.18 J mol^{-1}	K ⁻¹ molar heat capacity
	(A)	Zero	(B) Infinity	(C) 4.182 JK ⁻¹ mol ⁻	¹ (D) 75.48 JK ⁻¹ mol ⁻¹
20.	Duri The com proc	ing winters, moistur entropy of the sy pared to gases. Wit cess?	re condenses in the form of ystem in such cases decr th reference to the second	dew and can be seen of reases as liquids pos law, which statement	on plant leaves and grass. sess lesser disorder as is correct , for the above

- (A) The randomness of the universe decreases
- (B) The randomness of the surroundings decreases
- (C) Increase is randomness of surroiundings equals the decrease in randomness of system
- (D) The increase in randomness of the surroundings is greater as compared to the decrease in randomness of the system.
- 21. The enthalpy change for a given reaction at 298 K is − x J mol⁻¹ (x being positive). If the reaction occurs spontaneously at 298 K, the entropy change at that temperature
 - (A) can be negative but numerically larger than x/298
 - (B) can be negative but numerically smaller than x/298
 - (C) cannot be negative (D) cannot be positive
- 22. Spontaneous adsorption of a gas on a solid surface is exothermic process because
 - (A) enthalpy of the system increases. (B) entropy increases.
 - (C) entropy decreases. (D) free energy change increases.
- 23. Identify the correct statement regarding entropy :
 - (A) At absolute zero, the entropy of a perfectly crystalline substance is +ve.
 - (B) At absolute zero, the entropy of a perfectly crystalline substance is zero.
 - (C) At 0°C the entropy of a perfectly crystalline substance is taken to be zero.
 - (D) At absolute zero of temperature the entropy of all crystalline substances is taken to be zero.
- 24. Identify the correct statement regarding a spontaneous process :
 - (A) Exothermic processes are always spontaneous.
 - (B) Lowering of energy in the reaction process is the only criterion for spontaneity.
 - (C) For a spontaneous process in an isolated system, the change in entropy is positive.
 - (D) Endothermic processes are never spotaneous.
- 25. ΔS will be highest for the reaction

(A)
$$\operatorname{Ca}_{(s)} + \frac{1}{2} \operatorname{O}_{2(g)} \to \operatorname{CaO}_{(s)}$$

$$(C) C_{(s)} + 0_{2(g)} \rightarrow CO_{2(g)}$$

(B)
$$CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$$

(D) $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$

(D) ΔH is + ve; ΔS is - ve

- 26. The spontaneous flow of heat is always
 - (A) unidirectional from higher temperature to lower temperature
 - (B) from high to low pressure
 - (C) unidirectional from lower temperature to higher temperature
 - (D) from low to high pressure.
- 27. Which of the following is zero during adiabatic expansion of the gas
 - (A) ΔT (B) ΔS (C) ΔE (D) All the above
- 28. The occurrence of a reaction is impossible if
 - (A) ΔH is +ve; ΔS is also + ve but $\Delta H < T\Delta S$ (B) ΔH is -ve; ΔS is also -ve but $\Delta H > T\Delta S$
 - (C) ΔH is ve; ΔS is + ve
- 100

- 29. Identify the correct statement regarding entropy
 - (A) At 0°C, the entropy of a perfectly crystalline substance is taken to be zero
 - (B) At absolute zero of temperature, the entropy of a perfectly crystalline substance is +ve
 - (C) At absolute zero of temperature, the entropy of all crystalline substances is taken to be zero
 - (D) At absolute zero of temperature, the entropy of a perfectly crystalline substance is taken to be zero
- 30. A container has hydrogen and oxygen mixture in ratio of 4 : 1 by weight, then
 - (A) Internal energy of the mixture decreases (B) Internal energy of the mixture increases
 - (C) Entropy of the mixture increases (D) Entropy of the mixture decreases
- 31. The second law of thermodynamics says that in cyclic process.
 - (A) Work cannot be converted into heat (B) Heat cannot be converted into work
 - (C) work cannot be completely converted into heat
 - (D) Heat cannot be completely converted into work
- 32. A heat engine absorbs heat Q_1 at temperature T_1 and heat Q_2 at temperature T_2 . Work done by the engine is $(Q_1 + Q_2)$. This data
 - (A) Violates Ist law of thermodynamics
 - (B) Violates Ist law of thermodynamics if Q_1 is -ve
 - (C) Violates Ist law of thermodynamics if Q, is -ve
 - (D) Does not violate Ist law of thermodynamics
- 33. The molar neutralization heat for and as compared to molar neutralization heat of NaOH and HCl
- (A) Less (B) More (C) Equal (D) Depends on pressure 34. If the enthalpy of B is greater than of A, the reaction $A \rightarrow B$ is
 - (A) Endothermic (B) Exothermic (C) Instantaneous (D) Spontaneous

35. Which of the following fuels will have the highest calorific value (kJ/kg)(A) Charcoal(B) Kerosene(C)Wood(D) Dung

- 36. Which is the best definition of "heat of neutralization"
 - (A) The heat set free when one gram molecule of a base is neutralized by one gram molecule of an acid in dilute solution at a stated temperature
 - (B) The heat absorbed when one gram molecule of an acid is neutralized by one gram molecule of a base in dilute solution at a stated temperature
 - (C) The heat set free or absorbed when one gram atom of an acid is neutralized by one gram atom of a base at a stated temperature
 - (D) The heat set free when one gram equivalent of an acid is neutralized by one gram equivalent of a base in dilute solution at a stated temperature
- 37. Compounds with high heat of formation are less stable because
 - (A) High temperature is required to synthesise them
 - (B) Molecules of such compounds are distorted
 - (C) It is difficult to synthesis them
- (D) Energy rich state leads to instability

- 38. When a gas undergoes adiabatic expansion, it gets cooled due to
 - (A) Loose of kinetic energy
 - (C) Decrease in velocity
- 39. For a reaction to occur spontaneously
 - (A) $(\Delta H T\Delta S)$ must be negative
 - (C) ΔH must be negative

(B) (Δ S + T Δ S) must be negative

(D) Energy used in doing work

(D) Δ S must be negative

(C) $\overset{\Delta S}{\frown}$ $\overset{\tau_{\beta}}{\frown}$ (D) $\overset{\Delta S}{\frown}$

(C) Normal temperature (D) All temperature

(B) Fall in temperature

40. If for a given substance melting point is T_B and freezing point is T_A , then correct variation shown by graph between entropy change and temperature is

- 41. A Beckmann thermometer is used to measure(A) High temperature(B) Low temperature
- 42. The calorific value of fat is
 - (A) less than carbohydrates and protein
 - (B) less than that of protein but more than carbohydrates
 - (C) less than that of carbohydrates and more than that of protein
 - (D) more than thant of carbohydrates and protein
- 43. Which of the following processes is accompanied by an increase in entropy ?
 (A) Normal rubber band to stretched rubber band
 (B) Normal egg to hard boiled egg
 (C) Decomposition of N₂O₅ to N₂O to O₂
 (D) Formation of NH₃ for N₂H₂.
- 44.Which of the following does not exhibit zero entropy at absolute zero
(A) Benzene(B) Glass(C) Pyridine
- 45. The favourable conditions for a spontaneous reaction are
 - (A) $T\Delta S > \Delta H$, $\Delta H = +ve$, $\Delta S = +ve$
 - (C) $T\Delta S = \Delta H$, $\Delta H = -ve$, $\Delta S = -ve$
- (B) $T\Delta S > \Delta H$, $\Delta H = +ve$, $\Delta S = -ve$

(D) CCl₄

- (D) $T\Delta S = \Delta H$, $\Delta H = +ve$, $\Delta S = +ve$.
- 46. A block of ice at -10 °C is slowly heated and converted into steam at 100°C. Which of the following curves represents the phenomenon qualitatively?

- 47. On passing CO₂ gas in water, its entropy
 (A) Remains constant (B) Decreases (C) Increases (D) May increase or decrease.
- 48. When does the reaction occur spontaneously on the basis of the relation $\Delta G^\circ = -RT/nK$? (A) K = 0 (B) K = 1 (C) K > 1 (D) K < 1

49.	In thermodynamics, a process is called reversible who	en,
	(A) Surroundings and system change into each oth	her
	(B) The surroundings are always in equilibrium with	the system
	(C) The system changes into the surroundings spont	aneously.
	(D) There is no boundary between system and sur	roundings.
50.	Under certain conditions, the value of ΔG for a h	ypothetical reaction, $X + Y \longrightarrow Z$ is greater
	than zero, then –	
	(A) The reaction has tendency to proceed toward	ls Z
	(B) The reaction has attained equilibrium	
	(C) increase in temperature increases the yield of	product Z
	(D) X and Y predominate in the final mixture	
51.	For which of the following processes will energy b	e absorbed –
	(A) Separating an electron from an electron	(B) Separating proton from a proton
	(C) Separating a neutron from neutron	(D) Separating an electron from neutral atom
52.	For the combustion of 1 mole of liquid benzene at	25°C, the heat of reaction at constant pressure
	is given by, $C_6H_6(l) + 7O_2(g) \rightarrow 6CO_2(g) + 3H_2$	O (1); $\Delta H = -780980$ cal.
	What would be the heat of reaction at constant vol	ume?
	(A) -780090 cal (B) -780890 cal	(C) -780000 cal (D) -780900 cal
53.	Calculate heat of the following reaction at constant	pressure,
	$F_2O(g) + H_2O(g) \rightarrow O_2(g) + 2HF(g)$	
	The heats of formation of $F_2O(g)$, $H_2O(g)$ and	HF (g) are 5.5 kcal, -57.8 kcal and 64.2 kcal
	respectively. (A) $7(1 \text{ Keel})$ (D) 1t 0 Keel	(C) 31 (<i>K</i> as (D) 01 1 1 <i>K</i> as
51	(A) /0.1 Kcal (B) 11.9 Kcal	(C) 71.6 Kcai (D) 91.1 Kcai
54.	Calculate the heat of formation of benzene hour the	e following data, assuming no resonance.
	Bond energies . C = C = 82 kees = 1.40 kees C = U = 00 kees	
	C = C = 85 kcal = 140 kcal $C = H = 99$ kcal Heat of atomication of $C = 170$, 0 kcal	"C" Γ΄ ΙΙΛΗ = ?
	Heat of atomisation of $U = 52.1$ keal	
	(A) 70 Keal (B) 75 Keal	(C) 75 Keel (D) 70 Keel
55	Calculate AH at 358 K for the reaction	(C) = 75 Kcar $(D) = 70$ Kcar
55.	Each (c) + 3H (c) \rightarrow 2Fe (c) + 3H O(1)	
	$Fe_2O_3(s) + 5Fe_2(s) \rightarrow 2Fe_2(s) + 5Fe_2O(s)$ Given that $AH_1 = -33.29$ kL mole-1 and Cn t	for $E = O(s) E = (s) H O(l)$ and $H(g)$ are
	103.8, 25.1, 75.3 and 28.8 J/K mole.	1120^{-1} 1120
	(A) –22.22 KJ/mole (B) –25. 123 KJ/mole	(C) –28.136 KJ/mole (D) – 30.135 KJ/mole
56.	Ka for CH ₂ COOH at 25°C is 1.754×10^{-5} . At 50	$^{\circ}$ C. Ka is 1.633×10^{-5} What will be value of
	Δ S° for the ionisation of CH ₃ COOH?	-,
	(A) –94.44 J/mole K (B) –96.66 J/mole K	(C) –96.44 J/mole K (D) –90.44 J/mole K
	103 >	

57. $C_2H_6(g) + 3.5 O_2(g) \rightarrow 2CO_2(g) + 3H_2O(g)$				
	ΔS_{vap} (H ₂ O, l)	= x_1 cal K^{-1} (boiling poin	$t + T_1$)	
	$\Delta Hf(H_2O, l)$	$= \mathbf{x}_2$		
	$\Delta Hf(CO_2)$	$= X_3$		
	$\Delta Hf(C_2H_6)$	$= x_4$		
	Hence ΔH for the reaction	ion is –		
	(A) $2x_3 + 3x_2 - x_4$		(B) $2x_3 + 3x_2 - x_4 +$	$3x_{1}T_{1}$
	(C) $2x_3 + 3x_2 - x_4 - 3x_3$	1 ^T 1	(D) $x_1T_1 + X_2 + X_3 -$	- X ₄
58.	$C(s) + O_2(g) \rightarrow CO_2,$	(g); $\Delta H = -94.3$ kcal	/mol	
	$CO(g) + O_2(g) \rightarrow CO_2$	$\Delta H = -67.4 \text{ kca}$	l/mol	
	$O_2(g) \rightarrow 2O(g);$	$\Delta H = 117.4 \text{ kcal}$	/mol	
	$CO(g) \rightarrow C(g) + O(g)$); $\Delta H = 230.6$ kcal	/mol	
	Calculate ΔH for C (s) -	\rightarrow C (g) in kcal/mol.		
	(A) 171	(B)154	(C)117	(D)145
59.	The difference between would be : 25°C	n ΔH and ΔE on a molar b	pasis for the combusti	on of n-octane at 25°C
	(A) – 13.6 kJ	(B) – 1.14 kJ	(C) – 11.15 kJ	(D) + 11.15 kJ
60.	What is the work done against a constant exter that the molar enthalpy the above process ?	e against the atmosphere nal pressure of 1 atm ? Ass of vaporization is 9.72 kca	when 25 grams of w sume that steam obeys l/mole, what is the cha	ater vaporizes at 373 K s perfect gas laws. Given inge of internal energy in
	(A) 1294.0 cals, 11247	cals	(B) 921.4 cals, 1107	4 cals
	(C) 1029.4 cals, 12470	.6 cals	(D) 1129.3 cals, 102	207 cals
61.	In the reaction $CS_2(\ell)$	$+ 3O_2(g) \longrightarrow CO_2(g)$	$+2SO_2(g) \Delta H = -26$	65 kcal
	The enthalpies of form enthalpy of formation of	tation of CO ₂ and SO ₂ are of CS_2 is + 26 kcal/mol. Cal	both negative and an culate the enthalpy of	re in the ratio 4 : 3. The formation of SO_2 .
	(A) – 90 kcal/mol	(B) – 52 kcal/mol	(C) – 78 kcal/mol	(D) – 71.7 kcal/mol
62.	The bond dissociation respectively. The enthal	energy of gaseous H_2 , C py of formation for HCl ga	Cl_2 and HCl are 104, s will be	58 and 103 kcal mol ⁻¹
	(A) – 44.0 kcal	(B) – 22.0 kcal	(C) 22.0 kcal	(D) 44.0 kcal
63.	AB, A_2 and B_2 are diate 1 : 1 : 0.5 and enthalpy enthalpy of A_2 .	omic molecules. If the bo of formation of AB from A	nd enthalpies of A_2 , A_2 and B_2 is -100 kJ/m	AB & B_2 are in the ratio nol-1. What is the bond
	(A) 400 kJ/mol	(B) 200 kJ/mol	(C) 100 kJ/mol	(D) 300 kJ/mol
64.	Given the following data	1:		
	Substance	ΔH° (kJ/mol)	S°(J/mol K)	ΔG° (kJ/mol)
	FeO(s)	- 266.3	57.49	- 245.12
	C (Graphite)	0	5.74	0
	Fe(s)0	27.28	0	
	CO(g)	- 110.5	197.6	- 137.15

	Determine at what temperature the following reaction is spontaneous ?				
	FeO(s) + C (Graphite)-	\rightarrow Fe(s) + CO(g)			
	(A) 298 K	(B) 668 K			
	(C) 966 K	(D) ΔG° is +ve, he	ence the reac	tion will never l	be spontaneous
65.	One mole of a gas occur volume of 13 dm ³ . The	apying 3 dm ³ expan work done is –	nds against	constant extern	nal pressure of 1 atm to a
	$(A) - 10 \text{ atm } dm^3$	(B) – 20 atm dm^3	(C)	-39 atm dm ³	(D) – 48 atm dm^3
66.	The enthalpy change in energy is available for kilometre, then the max glucose will be	the oxidation of glu muscular work. In kimum distance that	ucose is – 28 f 100 kJ of at a person	880 kJ mol ⁻¹ . Tw muscular wor will be able to v	wenty five per cent of this k is needed to walk one walk after eating 120 g of
	(A) 4.8 km	(B) 2.4 km	(C)	8.4 km	(D) 9.8 km
67.	The heat of formation o be [Heat of vaporisation from the elements in the	f liquid methyl alco of liquid methyl alc eir standard states :	hol is kilojo ohol = 38 kJ H, 218 kJ/m	ule per mole us /mol. Heat of fo nol; C, 715 kJ/m	ing the following data will prmation of gaseous atoms nol; O, 249 kJ/mol.
Average bond energies : C – H, 415 kJ/mol; C – O, 356 kJ/mol O – H, 463 kJ/mol.]					
	(A) 46.0 kJ/mole	(B) 50.0 kJ/mole	(C)	73.3 kJ/mole	(D) – 266 kJ/mole
68.	10 g of argon gas is contour to 5 L. q, W, ΔE and [Atomic wt. of Ar = 40. (A) W = 106.635 cal, (B) W = 53.635 cal, q (C) W = -53.635 cal, (D) W = 103.635 cal,	pressed isothermal 1 Δ H for this pro] q = 103.635 cal, Δ I = - 53.635 cal, Δ H ; q = 63.635 cal, Δ H q = - 103.635 cal, Δ H	Ily and rever ocess are [] $E \neq 0 & \Delta H$ $E \neq 0 & \Delta H$ $E & \Delta H \neq 0$ $\Delta E & \Delta H$	sibly at a tempo R = 2.0 cal K = 0 = 0 = 0	erature of 27°C from 10 L 1 mol^{-1} , $\log_{10} 2 = 0.30$.
69.	Molar heat capacity of w	vater in equilibrium	with ice at c	constant pressur	re is –
	(A) zero	(B) infinity (∞)	(C) 40.45	kJ ⁻¹ mol ⁻¹	(D) 75.48 J K ⁻¹ mol ⁻¹
70.	Diborane is a potential r $B_2H_6(g) + 3O_2(g) \rightarrow B$ from the following data,	ocket fuel which un ${}_{2}O_{3}(s) + 3H_{2}O(g)$ the enthalpy change	dergoes con e for the con	nbustion accord	ling to the reaction, brane will be
	$2\mathbf{B}(\mathbf{s}) + \mathbf{O}_2(\mathbf{g}) \rightarrow \mathbf{B}_2\mathbf{O}_3(\mathbf{g})$	s);	ΔH	= - 1273 kJ	
	$\mathrm{H_2}(\mathrm{g}) + \mathrm{O_2}\left(\mathrm{g}\right) \rightarrow \mathrm{H_2O}(\ell$);	ΔH	= - 286 kJ	
	$H_2O(\ell) \rightarrow H_2O(g)$;		ΔH	= 44 kJ	
	$2B(s) + 2H_2(g) \rightarrow B_2H_6$	(g);	ΔH	=46 kJ	
	(A) – 2079 kJ mol–1	(B) – 1091 kJ mol	l–1 (C)	– 2035 kJ mol-	–1 (D) – 762 kJ mol–1
71.	A sample of argon gas 1.25 dm ³ to 2.50 dm ³ . T	at 1 atm pressure a he enthalpy change	and 27°C ex in this proc	pands reversib ess will be	ly and adiabatically from
	[Cv.m. for argon is 12.4	l8 jK⁻¹ mol⁻¹].			
	(A) 114.52 J	(B) – 114.52 J	(C)	– 57.26 J	(D) 57.26 J
			105		

72.	2. Find ΔG° and ΔH° for that the reaction $CO(g) + O_2(g) \rightarrow CO_2(g)$ at 300 K respectively are, when the standard entropy change is -0.094 kJ mol ⁻¹ K ⁻¹ The standard Gibbs free energies of			
	formation for CO ₂ and	CO are -394.4 and -137	2 kJ mol ⁻¹ , respective	ely.
	(A) $\Delta G^\circ = 257.2 \text{ kJ/mc}$	ol, $\Delta H^\circ = 285.4 \text{ kJ/mol}$		
	(B) $\Delta G^\circ = 514.4 \text{ kJ/mo}$	l, $\Delta H^\circ = -570.8 \text{ kJ/mol}$		
	(C) $\Delta G^\circ = +514.4 \text{ kJ/m}$	nol, $\Delta H^\circ = 570.8 \text{ kJ/mol}$		
	(D) $\Delta G^{\circ} = -257.2 \text{ kJ/r}$	nol, ΔH° = – 285.4 kJ/mo	1	
73.	$\Delta H = 30 \text{ kJ mol}^{-1}, \Delta S =$	75 J / k / mol. Find boilin	g temperature at 1 atn	1.
	(A) 400 K	(B) 300 K	(C) 150 K	(D) 425 K
74.	Spontaneous adsorption	n of a gas on a solid surfac	e is exothermic proces	s because
	(A) enthalpy of the syst	em increases.	(B) entropy increase	S.
	(C) entropy decreases.		(D) free energy chan	ige increases.
75.	There is 1 mol liquid (m Now the pressure is st constant pressure of 10	holar volume 100 ml) in an teeply increased to 100 b 00 bar. Calculate ΔH and Δ	adiabatic container ini ar, and the volume de AE. [Given 1 bar = 105	tial, pressure being 1 bar ecreased by 1 ml under N/m ²]
	(A) $\Delta E = 0 J, \Delta H \neq 0 J$	r 🔶	(B) $\Delta H = 0 J, \Delta E =$	10 J
	(C) $\Delta E = 20 \text{ J}, \Delta H = 89$	90 J	(D) $\Delta E = 0$ J, $\Delta H =$	10 J
76.	The ratio of P to V at an going a process. What i	ny instant is constant and i s the molar heat capacity c	s equal to 1, for a mon of the gas	noatomic ideal gas under
	(A) $\frac{3R}{2}$	(B) $\frac{4R}{2}$	(C) $\frac{5R}{2}$	P(D) 0
77.	The entropy values (in	$1 J K^{-1} mol^{-1}$ of H. (g)	= 130.6 CL(g) = 223	and $HCl(g) = 186.7$ at
	298 K and 1 atmpressu	re are given. Then entropy	change for the reactio	n.
	(A) + 540.3	(B) +727.3	(C) – 166.9	(D) +19.8
78.	A mixture of 2 mole of carbon monoxide to carbon	f CO(g) and one mole of a contrast of a c	O_2 in a closed vessel, ΔU are enthalpy and	is ignited to convert the internal energy change.
	(A) $\Delta H > \Delta U$	(B) $\Delta H < \Delta U$		
	(C) $\Delta H = \Delta U$	(D) the relationship dependent	nds on the capacity of	the vessel.
79.	For the reaction of one w correspond to :	mole zinc dust with one	sulphuric acid in a bo	mb calorimeter, ΔU and
	(A) $\Delta U < 0$, w = 0	(B) $\Delta U < 0, w < 0$	(C) $\Delta U > 0$, w = 0	(D) $\Delta U > 0$, w > 0
80.	If the enthalpies of for then the value of ΔH for	rmation of Al_2O_3 and Cr_2O_3 or the reaction ; $2Al + Cr_2O_3$	$O_3 \text{ are} - 1596 \text{ kJ and}$ $O_3 \rightarrow 2Cr + Al_2O_3 \text{ is }:$	– 1134 kJ respectively,
	(A) – 462 kJ	(B) – 1365 kJ	(C) – 2530 kJ	(D) +2530 kJ
81.	The internal energy chargoes from A to B by a be the net change in internal energy charge in internal energy charge in the energy charg	ange when a system goes reversible path and returns ernal energy	from state A to B is 4 s to state A by an irrev	0 kJ/mole. If the system versible path what would
	(A) < 40 kJ	(B) Zero	(C) 40 kJ	(D) > 40 kJ
82.	ΔG° for the reaction x - at 227°C is : (R = 2.0 c	+ y → z is – 4.606 kcal. Th al K ⁻¹ mol ⁻¹)	e value of equilibrium	constant of the reaction
	(A) 100	(B) 10	(C) 2	(D) 0.01
		106		

83.	• The latent heat of vaporisation of a liquid at 500 K and 1 atm pressure is 10 kcal/mol. What will be the change in internal energy (ΔE) of 3 moles of liquid at the same temperature?			
	(A) 13.0 kcal	(B) – 13.0 kcal	(C) 27.0 kcal	(D) – 27.0 kcal
84.	The work done in ergs 10 litres at 25°C is :	for a reversible expansion	of one mole of an idea	al gas from a volume of
	(A) 3.43 KJ	(B) 3.43 Kcal	(C) 3.43 J	(D) 3.43 cal
85.	Reaction, $H_2(g) + I_2(g)$	\rightarrow 2HI; Δ H = 12.40 kcal		
	According to this, heat of	of formation of HI will be		
	(A) 12.40 kcal	(B) – 12.4 kcal	(C) – 6.20 kcal	(D) 6.20 kcal
86.	The heat of combustion respectively. The heat of	ns of yellow phosphorus an f transition of yellow phosp	nd red phosphorus are phorus to red phosphor	e – 9.91 kJ and – 8.78 kJ rus is :
	(A) – 18.69 kJ	(B) +1.13 kJ	(B) +18.69 kJ	(D) – 1.13 kJ
87.	The heat of formation heat of combustion of c	of $CO(g)$ and $CO_2(g)$ are arbon monoxide will be :	– 26.4 kcal and – 94.0) kcal respectively. The
	(A) + 26.4 kcal	(B) – 67.6 kcal	(C) – 120.6 kcal	(D) +52.8 kcal
88.	The heats of combustion respectively. What will be	on of rhombic and monoc be the heat of conversion of	linic sulphur are – 709 <mark>Thombic su</mark> lphur to m	960 and – 71030 calorie onoclinic sulphur?
	(A) – 70960 cal	(B) – 71030 cal	(C) 70 cal	(D) – 70 cal
89.	An ideal gas expands i pressure of 1×105 Nm	In volume from 1×10^{-3} n 1^{-2} . The work is :	1^{3} to 1×10^{-2} m ³ at 30	0 K against a constant
	(A) – 900 J	(B) – 900 kJ	(C) 270 kJ	(D) + 900 kJ
90.	The enthalpies of comb respectively. The enthalp	oustion of carbon and earb by of formation of carbon r	oon monoxide are – 39 nonoxide per mole is	93.5 and – 283 kJ moŀ¹
	(A) 110.5 kJ	(B) 676.5 kJ	(C) – 676.5 kJ	(D) – 110.5 kJ
91.	If the bond dissociation 1:1:0.5 and Δ Hf for t X_2 will be	n energies of XY, X_2 and Y he formation of XY is – 20	Y ₂ (all diatomic molec 00 KJ mol ⁻¹ . The bond	cules) are in the ratio of dissociation energy of
	(A) 100 KJ mol ⁻¹	(B) 200 KJ mol ⁻¹	(C) 300 KJ mol ⁻¹	(D) 800 KJ mol ⁻¹
92.	Consider the reaction, N	$N_2(g) + 3H_2(g) 2NH_3(g); can$	ried out at constant ter	mperature and pressure.
	If ΔH and ΔU are enthal expressions is true ?	py change and internal ener	rgy change respectively	y, which of the following
	$(A) \Delta H = 0$	(B) $\Delta H = \Delta U$	(C) $\Delta H < \Delta U$	(D) $\Delta H > \Delta U$
93.	An ideal gas is allowed the initial temperature correct ?	to expand both reversibly and Tf is the final tempe	and irreversibly in an rature, which of the f	isolated system. If Ti is following statements is
	(A) $T_f > T_i$ for reversib	ble process but $T_f = T_i$ for it	rreversible process	
	(B) $(T_f)_{rev} = (T_f)_{irrev}$	(C) $T_f = T_i$ for both reverse	sible and irreversible p	rocesses
	(D) $(T_f)_{irrev} > (T_f)_{rev}$			

94. Identify the correct statement regarding a spontaneous process : (A) Exothermic processes are always spontaneous. (B) Lowering of energy in the reaction process is the only criterion for spontaneity. (C) For a spontaneous process in an isolated system, the change in entropy is positive. (D) Endothermic processes are never spontaneous. 95. In conversion of lime-stone to lime, $CaCO_{3}(s) \rightarrow CaO(s) + CO_{3}(g)$ the values of ΔH^{0} and ΔS^{0} are +179.1 kJ mol⁻¹ and 160.2 J/K respectively at 298 K and 1 bar. Assuming that ΔH° and ΔS° do not change with temperature, temperature above which conversion of limestone to lime will be spontaneous is : (A) 845 K (B) 1118 K (C) 1008 K (D) 1200 K For a reversible process at T = 300 K, the volume is increased from $V_i = 1 L$ to $V_f = 10 L$. 96. Calculate ΔH if the process is isothermal (D) – 11.47 kJ (A) 11.47 kJ (B) 4.98 kJ (C) 097. If at 298 K the bond energies of C-H, C-C, C=C and H-H bonds are respectively 414, 347, 615 and 435 kJ mol-1, the value of enthalpy change for the reaction ; $H_2C = CH_2(g) + H_2(g) \rightarrow H_3C - CH_3(g)$ at 298 K will be -(A) + 125 kJ(B) —125 kJ (C) +250 kJ (D) - 250 kJConsidering entropy(s) as thermodynamic parameter, the criterion for the spontaneity of any 98. process is : (B) $\Delta S_{system} - \Delta S_{surroundings} > 0$ (D) $\Delta S_{surroundings} > 0$ only (A) $\Delta S_{\text{system}} + \Delta S$ (C) $\Delta S_{system} > 0$ only Assuming that water vapour is an ideal gas, the internal energy change (ΔU) when 1 mol of water 99. is vapourisedat 1 bar pressure and 100°C, (Given : Molar enthalpy of vapourization of water at 1 bar and 373 K = 41 kJ mol⁻¹ and R = 8.3 J mol⁻¹ K⁻¹) will be : (A) 37.904 kJ mol⁻¹ (B) 41.00 kJ mol⁻¹ (C) 4.100 kJ mol⁻¹ (D) 3.7904 mol⁻¹ 100. The standard enthalpy of formation (Δ Hf°) at 398 K for methane, CH₄(g) is 74.8 kJ mol⁻¹. The additional information required to determine the average energy for C – H bond formation would be. (A) the dissociation energy of H₂ and enthalpy of sublimation of carbon (B) latent heat of vapourisation of methane (C) the first four ionization energies of carbon and electron gain enthalpy of hydrogen (D) the dissociation energy of hydrogen molecule, H2 101. Standard entropy of X₂, Y₂ and XY₂ are 60, 40 and 50 JK⁻¹ mol⁻¹, respectively. For the reaction, $1/2 X_2 + 3/2 Y_2 \rightarrow XY_3 \Delta H = -30 \text{ kJ}$. To be at equilibrium the temperature will be : (A) 500 K (B) 750 K (C) 1000 K (D) 1250 K 102. On the basis of the following thermochemical data : $(\Delta_f G^{\circ} H^+_{(a)} = 0)$ $H_2O(\ell) \longrightarrow H^+(aq) + OH^-(aq.)$; $\Delta H = 57.32 \text{ kJ}$ $H_2(g) + O_2(g) \longrightarrow H_2O(\ell); \Delta H = -286.20 \text{ kJ}$ The value of enthalpy of formation of OH⁻ ion at 25°C is : (A) -228.88 kJ (B) +228.88 kJ (C) -343.52 kJ (D) -22.88 kJ 108

103.	3. In a fuel cell methanol is used as fuel and oxygen gas is used as an oxidizer. The reaction is $CH_1OH(\ell) + 3/2O_1(g) \longrightarrow CO_1(g) + 2H_1O(\ell)$				
	At 2 -237 -726	98 K, standard Gib 7.2 and –394.4 kJ r 5kJ mol–1, efficienc	b's energies of formation f no ^{-1} respectively. If standard by of the fuel cell will be :	for $CH_3OH(\ell)$, $H_2O(\ell)$ dard enthalpy of com	and CO_2 (g) are -166.2, abustion of methanol is
	(A)	87%	(B) 90%	(C) 97%	(D) 80%
104.	The H ₂ fi N –	standard enthalpy from its atoms is –4. H bond in NH ₃ is	of formation of NH_3 is -4 36 kJ mol ⁻¹ and that of N_2	46.0 kJ mol ⁻¹ . If the en is –712 kJ mol ⁻¹ , the ar	nthalpy of formation of verage bond enthalpy of
	(A) ·	-964 kJ mol^{-1}	(B) + 352 kJ mol ⁻¹	$(C) + 1056 \text{ kJ mol}^{-1}$	(D) − 1102 kJ mol ⁻¹
105.	For If Te	a particular reversi is the temperature	ble reaction at temperatu at equilibrium, the reaction	re T, Δ H and Δ S were would be spontaneou	e found to be both +ve. s when.
	(A)	Te > T	(B) $T > Te$	(C) Te is 5 times T	(D) $T = Te$
106.	Cho	ose the correct opti	on about the following sen	ntnences [T= True , F =	=False]
	(i)	Ice in contact with	water constitutes a homog	geneous system.	
	(ii)	The process is kno change, i.e., dP =	own as isochoric in which 0.	the pressure remains	constant throughout the
	(iii)	A spontaneous pro	ocess is reversible in nature	2.	
	(iv)	In an isolated systemetry remains controls of the s	tem, one form of energy c nstant.	annot be converted in	to another, i.e., internal
	[A]	FFFF	[B] TTTT	[C] FTFT	[D] FFFT
107.	Cho	ose the correct opti	on about the following ser	ntnences [T= True , F =	=False]
	(i)	Molar heat capacit	ty at constant pressure = N	Iolar heat capacity at c	constant volume + $P\Delta V$.
	(ii)	A spontaneous pr	ocess is accompanied by a	decrease in entropy.	
	(iii)	Δ Hsub = Δ Hfusion	n + ∆Hvap.		
	(iv)	The standard heat at 25°C and one a	of formation represents the tmospheric pressure.	e formation of the com	pound from its elements
	(v)	Whenever an acid	is neutralised by a base, th	ne net reaction is	
		$H^{+}(aq) + OH^{-}(aq)$	$\mathbf{q}) \rightarrow \mathbf{H}_2 \mathbf{O}(\ell) ;$	$\Delta H = -13.7$ kcal	
	[A]	TFTTF	[B] TFTTF	[C]TFTFTF	[D] TFFFF
108.	Mate	ch the following :			
	Colu	ımn I			Column II
	(i) A	process carried out	infinitesimally slowly		(A) Adiabatic
	(ii) A	A process in which i	no heat enters or leaves the	system	(B) $\Delta G = 0$
	(iii) A	A process carried o	ut at constant temperature		(C) Sublimation
	(iv) /	A process in equilib	rium		(D) $\Delta E = 0$, $\Delta H = 0$
	(v) A	$A(s) \rightarrow A(g)$			(e) Reversible
	(vi)	Cyclic process			(f) Isothermal
	(A)	(i-e, ii-a, iii-f, ii)	iv - b, v - c, vi - e)	(B) $(i - e, ii - a, iii - a)$	f, $iv - ev - c$, $vi - d$)
	(C) ((i-e, ii-a, iii-f, ii)	iv - b, v - c, vi - d)	(D) $(i - e, ii - a, iii - a,$	c, iv – b, v – f, vi – d)

109. Match the following Column-I Column-II Isothermal process **P.** $q = \Delta U$ A. **B**. Adiabatic process **O.** w = $-P\Delta V$ C. Isobaric process **R.** $w = \Delta U$ **D.** Isochoric process **S.** w = $-n RT ln (V_2/V_1)$ (A) A = S B = R C = Q D = P(B) A = P B = Q C = R D = S(C) A = R B = S C = Q D = P(D) A = S B = R C = P D = QQuestion 110 to 115 are reasoning question choose the correct statement. (A) Statement -1 is true, Statement -2 is true.Statement -2 is the correct explanation for statement -1 (B) Statement -1 is true, Statement -2 is true. Statement -2 is not the correct explanation for statement -1(C) Statement -1 is true, Statement -2 is False (D) Statement -1 is false Statement -2 is True 110. Statement-1: The enthalpy of formation of $H_{2}O(\ell)$ is greater than of $H_{2}O(g)$. Statement-2: Enthalpy change is negative for the condensation reaction $H_2O(g) \rightarrow H_2O(\ell)$ (A) A**(B)** B (C) C(D) D 111. Statement-1: Heat of neutralisation of perchloric acid, HClO₃, with NaOH is same as that of HCl with NaOH. Statement-2: Both HCl and HClO₄ are strong acids. (D) D (C) C(A) A112. Statement-1: When a gas at high pressure expands against vacuum, the work done is maximum. Statement-2: Work done in expansion depends upon the pressure inside the gas and increase in volume. (A) A(C) C (B) B (D) D 113. Statement-1: In the following reaction : $C(s) + O_2(g) \rightarrow CO_2(g)$; $\Delta H = \Delta U - RT$ **Statement–2:** ΔH is related to U by the equation, $\Delta H = \Delta U - \Delta ng RT$ (A) A (B) B (C) C (D) D **114.** Statement I : The chemical reaction, $3H_2(g) + N_2(g) \longrightarrow 2NH_3$ shows decrease in entropy. **Statement II:** The process passes into equilibrium state when Δ GT,P becomes zero. (A) A (B) B (C) C (D) D **115.** Statement I : Both H and U are state functions. Statement II: Absolute values of H or U can be determined. (A) A(B) B (C) C(D) D **116.** 1 mole of NH, gas at 27° C is expanded adiabatic condition to make volume 8 times ($\gamma = 1.33$). Final temperature and work done respectively are -(A) 150 K, 900 cal (B) 150 K, 400 cal (C) 250 K, 1000 cal (D) 200 K, 800 cal

126. The heats of neutralisation of four acids a, b,c and d when neutralised against a common strong base are 13.7, 9.4, 11.2 and 12.4 kcal respectively. The weakest among these acids is
(A) a
(B) b
(C) c
(D) d

127. A gas is allowed to expand at constant pressure from a volume of 1.0 litre to 10.0 litre against an external pressure of 0.50 atm. If the gas absorbs 250 J of heat from the surroundings, what are the values of q, w and ΔE ? (Given 1 L atm = 101 J)

q	W	ΔE
(A) 250 J	– 455 J	– 205 J
(B) –250 J	– 455 J	– 710 J
(C) 250 J	455 J	710 J
(D) –250 J	455 J	205 J

128. The enthalpy of the reaction

 $H_2O_2(l) \rightarrow H_2O(l) + 1/2 O_2(g)$ is -23.5 kcal mol⁻¹ and the enthalpy of formation of $H_2O(l)$ is -68.3 kcal mol⁻¹. The enthalpy of formation of $H_2O_2(l)$ is -

(A) $-44.8 \text{ kcal mol}^{-1}$ (B) $44.8 \text{ kcal mol}^{-1}$ (C) $-91.8 \text{ kcal mol}^{-1}$ (D) $91.8 \text{ kcal mol}^{-1}$

- 129. The work done by the system in a cyclic process involving one mole of an ideal monoatomic gas is -50 kJ/cycle. The heat absorbed by the system per cycle is -
 - (A) Zero (B) 50 kJ (C) 50 kJ (D) 250 kJ
- 130. 9.0 gm of H₂O is vaporised at 100°C and 1 atm pressure. If the latent heat of vaporisation of water is xJ/gm, then ΔS is given by

(A)
$$\frac{x}{373}$$
 (B) $\frac{18x}{100}$ (C) $\frac{18x}{373}$ (D) $\frac{1}{2} \times \frac{18x}{373}$

- 131. Equal volumes of monoatomic and diatomic gases at same initial temperature and pressure are mixed. The ratio of specific heats of the mixture (C_p / C_v) will be
 - (A) 1 (B) 2 (C) 1.67 (D) 1.5
- 132. The heat evolved in the combustion of benzene is given by

 $C_6H_6 + 7\frac{1}{2}O_2 \rightarrow 6CO_2(g) + 3H_2O(l); \Delta H = -3264.6\,kJ$

Which of the following quantities of heat energy will be evolved when $39_{g}C_{o}H_{o}$ are burnt (A) 816.15 kJ (B) 1632.3 kJ (C) 6528.2 kJ (D) 2448.45 kJ

133. A cylinder of gas is assumed to contain 11.2 kg of butane (C_4H_{10}) . If a normal family needs 20000 kJ of energy per day. The cylinder will last: (Given that for combustion of butane is -2658 kJ)

134 Which expression is correct for the work done in adiabatic reversible expansion of an ideal gas

(A)
$$W = nRT \ln \frac{V_2}{V_1}$$
 (B) $W = n_e \ln \frac{T_2}{T_1}$ (C) $W = P\Delta V$ (D) $W = -\int_1^2 P dV$

- 135. Calculate ΔG° for a reaction having standard free energy change of NO₂, NO and O₃ as 12.39, 20.72 and 39.06 Kcal/mole
 - (A) 47.39 (B) 47.39 (C) 4.739 (D) -4.739

136.	The standard Gibbs free energy change ΔG^0 is related to equilibrium constant K_p as			
	(A) $K_p = -RT \ln \Delta G^\circ$	(B) $K_p = \left(\frac{e}{RT}\right)^{\Delta G^o}$	(C) $K_p = -\frac{\Delta G^{\circ}}{RT}$	(D) $K_p = e^{-\frac{\Delta G^o}{RT}}$
137.	The equilibrium conce 15 mole L ⁻¹ respective	entration of the species in ly at the for the reaction is	the reaction $A + B \equiv$	C + D are 3, 5, 10 and
	(A) 13.81	(B) – 1381.8	(C) – 138.18	(D) 1391.6
138.	In the reaction for the Δ H is -453.5 <i>cal</i> . This	transition of carbon in the points out that	diamond form to carb	oon in the graphite form,
	(A) Graphite is chemi	cally different from diamon	d	
	(B) Graphite is as stat	ble as diamond		
	(C) Graphite is more	stable than diamond		
	(D) Diamond is more	stable than graphite		
139.	Which one of the follo	wing is correct ?		
	(A) 1 cal. > 1 erg > 1 j	oule	(B) 1 erg > 1 cal. > (B)	1 joule
	(C) 1 cal. $>$ 1 joule $>$ 1	lerg	(D) 1 joule > 1 cal.	> 1 erg
140.	When 2 moles of wate temperature. Then what	r is boiled at 100° C tempe t will be change in entropy	rature which gets conv of system ?	verted to vapour at same
	(A) 25.12	(B) 52.12	(C) 21.76	(D) 217.6
141.	Heat of vapourisation convert 1 mole gaseou	of benzene is 7350 calorie s benzene to liquid benzen	K ⁻¹ mol ⁻¹ . Calculate t le at 77°C	he change in entropy to
	(A) 21 Calorie K ⁻¹ mo	l ⁻¹	(B) –21 Calorie K ⁻¹	mol ⁻¹
	(C) 21 Caloria K^{-1}		(D) 21 Calorie K ⁻¹	
	(C) = 21 Calolle K		(-)	
142.	What is the value of G^{4}	° at 25°C for the reaction ha	aving equilibrium cons	tant 4.0 ?
142.	What is the value of G $C_2H_5OH + CH_3COOH$	° at 25°C for the reaction has $ICH_3COOC_2H_5 + H_2O$	aving equilibrium cons	tant 4.0 ?
142.	What is the value of G $C_2H_5OH + CH_3COOH$ (A) - 82.11	^o at 25°C for the reaction has $ICH_3COOC_2H_5 + H_2O$ (B) + 82.11	(C) + 821.1	tant 4.0 ? (d)– 821.1
142. 143.	What is the value of G $C_2H_5OH + CH_3COOF$ (A) - 82.11 Standard cell potential free energy in KJ asso	^o at 25°C for the reaction has $ICH_3COOC_2H_5 + H_2O$ (B) + 82.11 of electrochemical cell is 1 ciated with it. $2Ag^+ + Cd =$	(C) + 821.1 .20 volt for given react → 2Ag + Cd ⁺²	tant 4.0 ? (d)– 821.1 tion. Calculate change in
142. 143.	What is the value of G $C_2H_5OH + CH_3COOF$ (A) - 82.11 Standard cell potential free energy in KJ asso (A) 115.8	^o at 25°C for the reaction has $ICH_3COOC_2H_5 + H_2O$ (B) + 82.11 of electrochemical cell is 1 ciated with it. $2Ag^+ + Cd =$ (B) -115.8	aving equilibrium cons (C) + 821.1 .20 volt for given react $\Rightarrow 2Ag + Cd^{+2}$ (C) -231.6	tant 4.0 ? (d)- 821.1 tion. Calculate change in (D) 231.6
142.143.144.	What is the value of G $C_2H_5OH + CH_3COOF$ (A) - 82.11 Standard cell potential free energy in KJ asso (A) 115.8 In reaction $x \rightarrow y \Delta H$ will be spontaneously T	^o at 25°C for the reaction has $ICH_3COOC_2H_5 + H_2O$ (B) + 82.11 of electrochemical cell is 1 ciated with it. $2Ag^+ + Cd \pm$ (B) -115.8 = 4 kcal/mol and $\Delta S = 10$	aving equilibrium cons (C) + 821.1 .20 volt for given react $\Rightarrow 2Ag + Cd^{+2}$ (C) -231.6 cal/mol k ⁻¹ then at wh	tant 4.0 ? (d)- 821.1 tion. Calculate change in (D) 231.6 nat temperature reaction
142.143.144.	What is the value of G $C_2H_5OH + CH_3COOH$ (A) - 82.11 Standard cell potential free energy in KJ asso (A) 115.8 In reaction $x \rightarrow y \Delta H$ will be spontaneously G (A) 500 k	^o at 25°C for the reaction has $ICH_3COOC_2H_5 + H_2O$ (B) + 82.11 of electrochemical cell is 1 ciated with it. $2Ag^+ + Cd =$ (B) -115.8 = 4 kcal/mol and $\Delta S = 10$ (B) 350 k	aving equilibrium cons (C) + 821.1 .20 volt for given react $\Rightarrow 2Ag + Cd^{+2}$ (C) -231.6 cal/mol k ⁻¹ then at wh (C) 200 k	tant 4.0 ? (d)-821.1 tion. Calculate change in (D) 231.6 nat temperature reaction (D) 250 k
142.143.144.145.	What is the value of G $C_2H_5OH + CH_3COOH$ (A) - 82.11 Standard cell potential free energy in KJ asso (A) 115.8 In reaction $x \rightarrow y \Delta H$ will be spontaneously T (A) 500 k For the reaction A + E -15 and -25K.cal.mol	^o at 25°C for the reaction has $ICH_3COOC_2H_5 + H_2O$ (B) + 82.11 of electrochemical cell is 1 ciated with it. $2Ag^+ + Cd =$ (B) -115.8 = 4 kcal/mol and $\Delta S = 10$ (B) 350 k B = C, the values of standar ¹ respectively, then what is	 (C) + 821.1 .20 volt for given react ⊋ Ag + Cd⁺² (C) -231.6 cal/mol k⁻¹ then at wh (C) 200 k rd free energy change the value of equilibrium 	tant 4.0 ? (d) – 821.1 tion. Calculate change in (D) 231.6 nat temperature reaction (D) 250 k for A, B and C are –10, m constant ?
142.143.144.145.	What is the value of G $C_2H_5OH + CH_3COOF$ (A) - 82.11 Standard cell potential free energy in KJ asso (A) 115.8 In reaction $x \rightarrow y \Delta H$ will be spontaneously G (A) 500 k For the reaction A + E -15 and -25K.cal.mol- (A) Zero	^o at 25°C for the reaction has $ICH_3COOC_2H_5 + H_2O$ (B) + 82.11 of electrochemical cell is 1 ciated with it. $2Ag^+ + Cd =$ (B) -115.8 = 4 kcal/mol and $\Delta S = 10$ (B) 350 k B = C, the values of standar ⁱ respectively, then what is (B) One	 (C) + 821.1 .20 volt for given react 2Ag + Cd⁺² (C) -231.6 cal/mol k⁻¹ then at wh (C) 200 k rd free energy change the value of equilibrium (C) More than one 	tant 4.0 ? (d) – 821.1 tion. Calculate change in (D) 231.6 nat temperature reaction (D) 250 k for A, B and C are –10, m constant ? (D) Less than one
 142. 143. 144. 145. 146. 	What is the value of G $C_2H_5OH + CH_3COOF$ (A) - 82.11 Standard cell potential free energy in KJ asso (A) 115.8 In reaction $x \rightarrow y \Delta H$ will be spontaneously G (A) 500 k For the reaction A + E -15 and -25K.cal.mol- (A) Zero If is the change in energy in the spontaneously G	^o at 25°C for the reaction has $ICH_3COOC_2H_5 + H_2O$ (B) + 82.11 of electrochemical cell is 1 ciated with it. $2Ag^+ + Cd =$ (B) -115.8 = 4 kcal/mol and $\Delta S = 10$ (B) 350 k B = C, the values of standar ⁱ respectively, then what is (B) One in thalpy and the change is	aving equilibrium cons (C) + 821.1 .20 volt for given react $= 2Ag + Cd^{+2}$ (C) -231.6 cal/mol k ⁻¹ then at wh (C) 200 k rd free energy change the value of equilibrium (C) More than one in internal energy acc	tant 4.0 ? (d) – 821.1 tion. Calculate change in (D) 231.6 (D) 250 k for A, B and C are –10, m constant ? (D) Less than one companying a gaseous
 142. 143. 144. 145. 146. 	What is the value of G $C_2H_5OH + CH_3COOF$ (A) - 82.11 Standard cell potential free energy in KJ asso (A) 115.8 In reaction $x \rightarrow y \Delta H$ will be spontaneously T (A) 500 k For the reaction A + E -15 and -25K.cal.mol ⁻¹ (A) Zero If is the change in er Reaction (A) ΔH is always great	^o at 25°C for the reaction has $ICH_3COOC_2H_5 + H_2O$ (B) + 82.11 of electrochemical cell is 1 ciated with it. $2Ag^+ + Cd =$ (B) -115.8 = 4 kcal/mol and $\Delta S = 10$ (B) 350 k B = C, the values of standation (B) One in thalpy and the change in er than	aving equilibrium cons (C) + 821.1 .20 volt for given react $= 2Ag + Cd^{+2}$ (C) -231.6 cal/mol k ⁻¹ then at wh (C) 200 k rd free energy change the value of equilibrium (C) More than one in internal energy acc	tant 4.0 ? (d) – 821.1 tion. Calculate change in (D) 231.6 nat temperature reaction (D) 250 k for A, B and C are –10, m constant ? (D) Less than one companying a gaseous
 142. 143. 144. 145. 146. 	What is the value of G $C_2H_5OH + CH_3COOF$ (A) - 82.11 Standard cell potential free energy in KJ asso (A) 115.8 In reaction $x \rightarrow y \Delta H$ will be spontaneously Ω (A) 500 k For the reaction A + E -15 and -25K.cal.mof (A) Zero If is the change in energy (A) ΔH is always great (B) $\Delta H < \Delta E$ only if the	^o at 25°C for the reaction has $ICH_3COOC_2H_5 + H_2O$ (B) + 82.11 of electrochemical cell is 1 ciated with it. $2Ag^+ + Cd =$ (B) -115.8 = 4 kcal/mol and $\Delta S = 10$ (B) 350 k B = C, the values of standation (B) One in thalpy and the change is er than e number of moles of the pro-	 (C) + 821.1 (C) + 821.1 (C) volt for given react 2Ag + Cd⁺² (C) -231.6 cal/mol k⁻¹ then at wh (C) 200 k rd free energy change the value of equilibrium (C) More than one in internal energy according to the value of energy according to the value	tant 4.0 ? (d) – 821.1 tion. Calculate change in (D) 231.6 nat temperature reaction (D) 250 k for A, B and C are –10, m constant ? (D) Less than one companying a gaseous e number of the reactants
 142. 143. 144. 145. 146. 	What is the value of G $C_2H_5OH + CH_3COOF$ (A) - 82.11 Standard cell potential free energy in KJ asso (A) 115.8 In reaction $x \rightarrow y \Delta H$ will be spontaneously T (A) 500 k For the reaction A + E -15 and -25K.cal.mof (A) Zero If is the change in energy (A) ΔH is always great (B) $\Delta H < \Delta E$ only if the (C) ΔH is always less t	^o at 25°C for the reaction has $ICH_3COOC_2H_5 + H_2O$ (B) + 82.11 of electrochemical cell is 1 ciated with it. $2Ag^+ + Cd =$ (B) -115.8 = 4 kcal/mol and $\Delta S = 10$ (B) 350 k B = C, the values of standar I^{-1} respectively, then what is (B) One in thalpy and the change is er than e number of moles of the pro- han ΔE	 (C) + 821.1 (C) + 821.1 (C) volt for given react 2Ag + Cd⁺² (C) -231.6 cal/mol k⁻¹ then at wh (C) 200 k rd free energy change the value of equilibrium (C) More than one in internal energy according to the second sec	tant 4.0 ? (d) – 821.1 tion. Calculate change in (D) 231.6 (D) 250 k for A, B and C are –10, m constant ? (D) Less than one companying a gaseous e number of the reactants

147. A schematic plot of versus inverse of temperature for a reaction is shown below

1	D	2	Α	3	С	4	D	5	С
6	С	7	D	8	С	9	А	10	В
11	С	12	D	13	А	14	А	15	D
16	В	17	С	18	В	19	В	20	D
21	В	22	С	23	В	24	С	25	В
26	А	27	В	28	D	29	D	30	С
31	D	32	D	33	С	34	А	35	В
36	D	37	D	38	В	39	В	40	Α
41	В	42	D	43	С	44	В	45	Α
46	А	47	В	48	С	49	В	50	D
51	D	52	В	53	Α	54	В	55	С
56	С	57	В	58	D	59	С	60	С
61	D	62	В	63	Α	64	С	65	Α
66	А	67	А	68	D	69	В	70	С
71	С	72	D	73	Α	74	С	75	В
76	D	77	D	78	В	79	Α	80	А
81	В	82	Α	83	С	84	Α	85	D
<mark>86</mark>	D	87	В	88	С	89	Α	90	D
91	D	92	С	93	D	94	С	95	В
96	С	97	В	98	Α	99	Α	100	Α
101	В	102	Α	103	С	104	В	105	В
106	А	107	В	108	С	109	Α	110	Α
111	А	112	D	113	D	114	В	115	С
116	А	117	В	118	В	119	В	120	Α
121	В	122	С	123	В	124	В	125	Α
126	С	127	А	128	А	129	В	130	D
131	D	132	В	133	С	134	С	135	А
136	D	137	В	138	С	139	С	140	С
141	С	142	D	143	С	144	А	145	В
146	D	147	Α	148	С	149	Α	150	В

ANSWER KEY

Hints

(16)
$$W = 2.303 \text{ nRT} \log \frac{V_{\pm}}{V_{\pm}} = 2.303 \times 1 \times 8.314 \times 10^7 \times 298 \log \frac{20}{10}$$

$$= 298 \times 10^7 \times 8.314 \times 2.303 \log 2$$
(20) As dew formation is spontaneous process therefore entropy or randomness of the universe will increase. As randomneness of the system has decreased but randomness of the surrounding will increase. As randomneness of the system has decreased but randomness of the surrounding will increase. As randomneness of the system has decreased but randomness of the surrounding will increase. As randomneness of the system has decreased but randomness of the surrounding will increase. As randomneness of the system has decreased but randomness of the surrounding will increase. As randomneness of the system has decreased but randomness of the surrounding will increase. As randomneness of the system has decreased but randomness of the system and surrounding. For a spontaneous process in an isolated system, the change in entropy is positive, i.e. As > 0 .
(24) In an isolated system, there is no exchange of energy or matter between the system and surrounding. For a spontaneous process in an isolated system, the change in entropy is positive, i.e. $A > 0$.
(25) $\Delta H = \Delta E + \Delta n_g RT$
Here, $\Delta n_g = 6 - 7.5 = -1.5$.
Thus, $\Delta E = \Delta H + \Delta n_g RT = -780980 - (=1.5 -) \times 2 \times 298 = -780090$ calories.
(55) $\Gamma_{CD} = 2 \times 251 + 3 \times 75.3 + 1103.8 + 3 \times 28.81 = 85.9 J/K mole.$
We have $\frac{\Delta H_1 - \Delta H_1}{T_2 - T_1} = \Delta C_p$.
 $\frac{\Delta H_{1:8t} - (-33290)}{358 - 298} = 85.9$.
 $\Delta H_358 = -28136 J/mole = -28.136 kJ/mole.$
(56) $(G^{\circ}_{298} = -2.303 \text{ K B} = -2.303 \times 8.314 \times 298 \times \log (1.754 \times 10^{-5}) = 27194 \text{ J}.$
 $(G^{\circ}_{323} = 2.303 \times 8.314 \times 323 \times \log (1.633 \times 10^{-5}) \text{ GFB960T J}.$
 $2H94 - 298 \Delta S^{\circ}$.
 $294655^{\circ} = 22.9 \oplus AS^{\circ}$.
 $2 + 265 = 4x + 6x - 26$.
 $x = -23.9$.
 $\therefore \Delta H_{f} (SO_{2}, g) = 3x = -71.7 \text{ Keal / mol.}$

	Given				
	H_2 (g) \rightarrow HCl (g);	$\Delta H = 104 \text{ kcal}$	(1)		
	$Cl_2(g) \rightarrow 2Cl(g);$	$\Delta H = 58$ kcal	(2)		
	$HCl (g) \rightarrow H(g) + Cl(g);$	$\Delta H = 103 \text{ kcal}$	(3)		
	Heat of formation for HCl				
	$H_2(g) + Cl_2(g) \rightarrow HCl(g);$	$\Delta H = ?$			
	Divide equation (1) and (2) by 2, and then add				
	$H_2(g) + Cl_2(g) \rightarrow H(g) + Cl_2$	(g); $\Delta H = 81$ kcal	(4)		
	Subtracting equation (3) from equation	(4)			
	HCl (g) \rightarrow H(g) + Cl(g);	$\Delta H = 103$ kcal	(3)		
		_			
	$H_2(g) + Cl_2(g) HCl(g);$	$\Delta H = -22.0$ kcal			
	\therefore Enthalpy of formation of HCl gas = - 22.0 kcal				
	From first law of Thermodynamics, Δ	$E = q + w \Longrightarrow nC_V dT$	$= nCdT - PdV \dots(1)$		
	Now according to process, $P = V$ and according to ideal gas equation, $PV = nRT$				
We have, $V^2 = nRT$					
	On differentiating $2VdV = nRdT$	and $PdV = VdV =$	nRdT		
		, shie	2		
	So from first equation we have, $nC_v dT = nCdT - \frac{nRdT}{r}$				
	R $4R$				
	So, $C_v = C - \frac{1}{2}$ Hence	$c = \frac{1}{2}$			
	$W = -P\Delta V$		2		
	$= -1 \times 10^5 (1 \times 10^{-2} - 1 \times 10^{-3})$	$= -1 \times 10^5 \times 9 \times$	$10^{-3} = -900$ J.		
	$\Delta H = -393.5 \text{ kJ mol}^{-1}$		(1)		
	$CO(g) + O_2(g) \rightarrow CO_2(g) ; \Delta H = -$	- 283 kJ mol ⁻¹	(2)		
	On subtraction equation (2) from equation (1), we get $C(s) + O_2(g) \rightarrow CO(g)$; $\Delta H = -110.5 \text{ kJ mol}^{-1}$.				
	The enthalpy of formation of carbon monoxide per mole = -110.5 kJ mol ⁻¹ .				
	$\Delta H = -393.5 \text{ k}.$	J mo⊢1	(1)		
	$CO(g) + O_2(g) \rightarrow CO_2(g)$; $\Delta H = -$	- 283 kJ mol ⁻¹	(2)		
	Let the bond dissociation energy of XY, X ₂ and Y ₂ be x,x and x, KJ/mol respectively,				
	$\frac{1}{2}X_2 + \frac{1}{2}Y_2 \rightarrow XY; \Delta Hf = -200 \text{ KJ mol}^{-1}.$				
	2^{2} 2^{-2} $2^$				
	energy ofproduct)]				
	$\begin{bmatrix} 1 & 1 & \end{bmatrix} = \begin{bmatrix} x & 0.5 \end{bmatrix} $				
	$= \left\lfloor \frac{1}{2} \Delta H_{x2} + \frac{1}{2} \Delta H_{y2} - \Delta H_{xy} \right\rfloor = \frac{x}{2} + \frac{1}{2} \Delta H_{y2} - $	$\frac{0.5x}{2} - x = -200$	$x = 800 \text{ KJ mol}^{-1}$.		
		16			

Second method

	$XY \longrightarrow X_{(g)} + Y_{(g)}H a + kJ / mole$;(i)
	$X_2 \longrightarrow 2X\Delta H = a kJ/r$	nole ; (ii)
	$Y_2 \longrightarrow 2Y \Delta H = 0.5 a$	kJ/mole ; (iii)
	$\frac{1}{2}$ ×(ii) + $\frac{1}{2}$ ×(iii)-(i), gives	$\frac{1}{2}X_2 + \frac{1}{2}Y_2 \longrightarrow XY;$
(92)	$N_2 + 3H_2 \rightarrow 2NH_3$	$\Delta n = 2 - 4 = -2$
	$\Delta H = \Delta U + \Delta nRT = \Delta U - 2RT.$	$\therefore \Delta H < \Delta U.$

(93) In isolated system, the expansion of gas is carried out adiabatically. Since heat exchange between system and surrounding is not possible i.e. q = 0 and secondary w_{rev} is always greater than w_{irr} therefore for reversible process there must be comparatively higher decreases in internal energy i.e. ΔU for reversible process will be more negative. Hence, final temperature in reversible process will be smaller than irreversible process.

$$\therefore$$
 (T_f)_{irrev} > (T_f)_{rev}

(94) In an isolated system, there is no exchange of energy or matter between the system and surrounding. For a spontaneous process in an isolated system, the change in entropy is positive, i.e. $\Delta S > 0$.

Most of the spontaneous chemical reactions are exothermic. A number of endothermic reaction are spontaneous e.g melting of ice (an endothermic process) is a spontaneous reaction.

The two factors which are responsible for the spontaneity of process are

(i) tendency to acquire minimum energy

(ii) tendency to acquire maximum randomness.

$$(95) \qquad \Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

for a spontaneous process $\Delta G^0 < 0$

$$\Delta H^{0} - T\Delta S^{0} < 0$$

$$\Gamma\Delta S_0 > \Delta H_c$$

$$T > \frac{\Delta H^{\circ}}{\Delta S^{\circ}}$$
 $T > \frac{179.1 \times 1000}{160.2}$
 $T > 1117.9$ K ≈ 1118 K.

- (99) $\Delta U = \Delta H \Delta nRT$ = 41000 - 1 × 8.314 × 373 = 41000 - 3101.122 = 37898.878 J mol⁻¹ = 37.9 kJ mol⁻¹.
- (100) $C + 2H_2 \rightarrow CH_4$; $\Delta H^0 = -74.8 \text{ kJ mol}^{-1}$ In order to calculate average energy for C - H bond formation we should know the followng data. $C(\text{graphite}) \rightarrow C(g)$; $\Delta H f^0 = \text{enthalpy of sublimation of carbon}$ $H_2(g) \rightarrow 2H(g)$; ΔH^0 bond dissociation energy of H₂.

(101)
$$\Delta S^{\circ}$$
 reaction = 50 - 1/2 (60) - 3/2 (40) = -40 JK⁻¹
For reaction to be at equilibrium
 $\Delta G = 0$
 $\Delta H - T\Delta S = 0 \Rightarrow T = \frac{\Delta H}{\Delta S} = \frac{3000}{40} = 750 K$
(102) $H_2(g) + O_2(g) \longrightarrow H_2O(t) \qquad \Delta H = -286.20 kJ$
 $AH_r = \Delta H_f(H_2O(t) - \Delta H_f(H_2, g) \Delta H_f(O_2, g)$
 $-286.20 = \Delta H_f(H_2O(t))$
So $\Delta H_f(H_2O(t) = -286.20 KJ/mole$
 $H_2O(t) \longrightarrow H^+(aq) + OH^-(aq) \Delta H = 57.32 kJ$
 $\Delta H_r = \Delta H^o_f(OH^-, aq) = -286.20$
 $\Delta H^o_f(OH^-, aq) = 57.32 - 286.20 - 228.88 kJ.$
(103) $CH_3OH(t) + 3/2 O_2(g) \longrightarrow CO_2(g) + 2H_2O(t)$
 $\Delta G_r = \Delta G_f(CO_2, g) + 2\Delta G_f(H_2O_2(t)) - \Delta G_f(CH_3OH, (t)) - \Delta G_f(O_2, g)$
 $= -394.4 + 2(-237.2) - (-166.2) - 0 = -394.4 - 474.4 + 166.2 = -868.8 \times 166.2$
 $\Delta G_r = -702.6 kJ$
% efficiency $-\frac{702.6}{726} \times 100 = 97\%$.
(105) $AG = AH - TAS$
For spontaneous reaction ΔG must be negative
 At equilibrium temperature $AG = 0$
to maintain the negative value of ΔG
T should be greater than T₆.
(117) $W = -2.303$ n RT log $\frac{V_s}{V_s} = -2.303 \times 2 \times 2 \times 298 \times \log \frac{50}{15} = -1436$ calories.
(120) $\Delta G^{\circ} = -RT \ln Kp$
 $= -2.303 + 1987 - 298 \log 1.8 - 10^{-7}$
 $= -2.303 + 1987 - 298 \log 1.8 - 10^{-7}$
 $= -2.303 + 1987 - 298 (-6.7447) = 9197.5 Cal$
(131) $C_v = \frac{3}{2}RT; C_p = \frac{5}{2}RT$ for diatomic gas
Thus for mixture of 1 mole each, $C_v = \frac{3}{2}\frac{RT + \frac{5}{2}RT}{2}$ and $C_p = \frac{5}{2}\frac{RT + \frac{7}{2}RT}{2}$
Therefore, $C_p/C_v = \frac{3RT}{2RT} = 1.5$.

(132)78g of benzene on combustion produces heat = -3264.6 kJ :. 39g will produce = $\frac{-3264.6}{2}$ = -1632.3 kJ. (137) $\Delta G = -2.303$ RT log K', Here R = 2 cal, T = 300K $K' = \frac{10 \times 15}{3 \times 5} = 10; \quad \Delta G = -2.303 \times 2 \times 300 \times \log_{10} 10$ $= -2.303 \times 2 \times 300 \times 1 = -1381.8$ cal For 2 moles of water vapour, Absorbed energy by system is (140) $\Delta H_{vap} = 2 \times 9720 = 19440$ Cal. $\Delta S_{vap} = \frac{\Delta H_{vap}}{T_{b}}$ $= \frac{19440}{(100+273)}$ = 52.12 Cal. K⁻¹. mole⁻¹ = 52.12 4.184 $= 217.6 \text{ joule.K}^{-1} \text{. mole}^{-1}$ $\Delta G^{\circ} = -2.303 \text{ RT logk}$ (142) $= -2.303 \times 1.987 \times 298 \log 4$ $= -1363.7 \log 4$ $= -1363.7 \times 0.6021$ = -821.1 Cal. $\Delta G^{\circ} = -nFE^{\circ}_{cell} = -2 \times 96500$ 231.6 KJ (143).20J $\Delta G = \Delta H - T \Delta S$ (144) $O = 4000 - T \times 10$ because $(\Delta G = 0)$ T = 400 ki.e. At 400 k, temperature reaction will be in equilibrium. But at temperature higher than 400 k the value of ΔG will be negative. Thus at 500 k temperature reaction will be spontaneous. $\Delta G^{o} = \Delta G^{o} P - \Delta G^{o} R$ (145) $= \Delta G^{o}C - [\Delta G^{o}A + \Delta G^{o}B]$ = -25 - [-10 - 15]= -25 + 25 = 0 $\Delta G^{o} = 0$ so K = 1 12.05×14

(149)
$$\Delta H = \frac{13.95 \times 44}{2.2016} = 278.7 \text{ kcal}$$